Ellipsoid Class
- An Ellipsoid is a (complete) unit sphere with an arbitrary (possibly skewed)
Transform
to 3d. - The (unit) sphere parameterization with respect to longitude
theta
and latitudephi
isu = cos(theta) * cos (phi)
v = sin(theta) * cos(phi)
w = sin(phi)
- The sphere (u,v,w) multiply the x,y,z columns of the Ellipsoid transform.
Implements
Methods
Name | Description | |
---|---|---|
anglePairToGreatArc(angleA: LongitudeLatitudeNumber, angleB: LongitudeLatitudeNumber, result?: Arc3d): undefined | Arc3d | See radiansPairToGreatArc, which does this computation with positions from angleA and angleB directly as radians |
|
announceClippedArcIntervals(arc: Arc3d, announce?: AnnounceNumberNumberCurvePrimitive): boolean | Announce "in" portions of a line segment. | |
announceClippedSegmentIntervals(f0: number, f1: number, pointA: Point3d, pointB: Point3d, announce?: AnnounceNumberNumber): boolean | Announce "in" portions of a line segment. | |
clone(): Ellipsoid | return a clone with same coordinates | |
cloneTransformed(transform: Transform): undefined | Ellipsoid | return a cloned and transformed ellipsoid. | |
constantLatitudeArc(longitudeSweep: AngleSweep, latitude: Angle, result?: Arc3d): undefined | Arc3d | Return an arc (circular or elliptical) at constant longitude | |
constantLongitudeArc(longitude: Angle, latitudeSweep: AngleSweep, result?: Arc3d): undefined | Arc3d | Return an arc (circular or elliptical) at constant longitude | |
createPlaneSection(plane: Plane3dByOriginAndUnitNormal): undefined | Arc3d | Construct an arc for the section cut of a plane with the ellipsoid. | |
createSectionArcPointPointVectorInPlane(pointAnglesA: LongitudeLatitudeNumber, pointAnglesB: LongitudeLatitudeNumber, inPlaneVector: Vector3d, result?: Arc3d): undefined | Arc3d | Construct an arc which | |
intersectRay(ray: Ray3d, rayFractions: number[], xyz: Point3d[], thetaPhiRadians: LongitudeLatitudeNumber[]): number | Compute intersections with a ray. | |
isAlmostEqual(other: Ellipsoid): boolean | test equality of the 4 points | |
isPointOnOrInside(point: Point3d): boolean | Implement the isPointInOnOrOutside test fom the interface |
|
localToWorld(localPoint: Readonly<WritableXYAndZ>, result?: Point3d): Point3d | * Convert a point within the underlying mapped sphere space to world coordinates. | |
otherEllipsoidAnglesToThisEllipsoidAngles(otherEllipsoid: Ellipsoid, otherAngles: LongitudeLatitudeNumber, result?: LongitudeLatitudeNumber): undefined | LongitudeLatitudeNumber | * Evaluate the surface normal on other ellipsoid at given angles |
|
patchRangeStartEndRadians(theta0Radians: number, theta1Radians: number, phi0Radians: number, phi1Radians: number, result?: Range3d): Range3d | Return the range of a uv-aligned patch of the sphere. | |
projectPointToSurface(spacePoint: Point3d): undefined | LongitudeLatitudeNumber | Find the closest point of the (patch of the) ellipsoid. | |
radiansPairToEquatorialEllipsoid(thetaARadians: number, phiARadians: number, thetaBRadians: number, phiBRadians: number, result?: Ellipsoid): undefined | Ellipsoid | * For a given pair of points on an ellipsoid, construct another ellipsoid | |
radiansPairToGreatArc(thetaARadians: number, phiARadians: number, thetaBRadians: number, phiBRadians: number, result?: Arc3d): undefined | Arc3d | * For a given pair of points on an ellipsoid, construct an arc (possibly elliptical) which | |
radiansToFrenetFrame(thetaRadians: number, phiRadians: number, result?: Transform): undefined | Transform | Evaluate a point and rigid local coordinate frame the ellipsoid at angles give in radians. | |
radiansToPoint(thetaRadians: number, phiRadians: number, result?: Point3d): Point3d | Evaluate a point on the ellipsoid at angles give in radians. | |
radiansToPointAnd2Derivatives(thetaRadians: number, phiRadians: number, point: Point3d, d1Theta: Vector3d, d1Phi: Vector3d, d2ThetaTheta: Vector3d, d2PhiPhi: Vector3d, d2ThetaPhi: Vector3d): void | Evaluate a point and derivatives wrt to theta, phi, thetaTheta, phiPhi, and thetaPhi. | |
radiansToPointAndDerivatives(thetaRadians: number, phiRadians: number, applyCosPhiFactor: booleantrue, result?: Plane3dByOriginAndVectors): Plane3dByOriginAndVectors | Evaluate a point and derivatives with respect to angle on the ellipsoid at angles give in radians. | |
radiansToUnitNormalRay(thetaRadians: number, phiRadians: number, result?: Ray3d): undefined | Ray3d | Evaluate a point and unit normal at given angles. | |
sectionArcWithIntermediateNormal(angleA: LongitudeLatitudeNumber, intermediateNormalFraction: number, angleB: LongitudeLatitudeNumber): Arc3d | * create a section arc with and end at positions A and B, and in plane with the normal at a fractional | |
silhouetteArc(eyePoint: Point4d): undefined | Arc3d | Find the silhouette of the ellipsoid as viewed from a homogeneous eyepoint. | |
surfaceNormalToAngles(normal: Vector3d, result?: LongitudeLatitudeNumber): LongitudeLatitudeNumber | Find the (unique) extreme point for a given true surface perpendicular vector (outward) | |
tryTransformInPlace(transform: Transform): boolean | Apply the transform to each point | |
worldToLocal(worldPoint: Readonly<WritableXYAndZ>, result?: Point3d): undefined | Point3d | * Convert a world point to point within the underlying mapped sphere space. | |
create(matrixOrTransform?: Transform | Matrix3d): Ellipsoid Static | Create with a clone (not capture) with given transform. | |
createCenterMatrixRadii(center: Point3d, axes: Matrix3d, radiusX: number, radiusY: number, radiusZ: number): Ellipsoid Static | Create a transform with given center and directions, applying the radii as multipliers for the respective columns of the axes. | |
radiansToUnitNormalRay(ellipsoid: Ellipsoid, thetaRadians: number, phiRadians: number, result?: Ray3d): undefined | Ray3d Static | * if ellipsoid is given, return its surface point and unit normal as a Ray3d. |
Properties
Name | Type | Description | |
---|---|---|---|
transformRef Accessor ReadOnly | Transform | Return a (REFERENCE TO) the transform from world space to the mapped sphere space. |
Defined in
- geometry3d/Ellipsoid.ts Line 149
Last Updated: 18 January, 2025
Found something wrong, missing, or unclear on this page?Raise an issue in our repo.