EllipsoidPatch Class

  • An EllipsoidPatch is
    • An underlying (full) Ellipsoid object
    • an angular range (AngleSweep) of longitudes around the equator
    • an angular range (AngleSweep) of latitudes, with 0 at the equator, +90 degrees at north pole.
  • The EllipsoidPatch implements UVSurface methods, so a PolyfaceBuilder can generate facets in its method addUVGridBody

Implements

Methods

Name Description
anglesToUnitNormalRay(position: LongitudeLatitudeNumber, result?: Ray3d): undefined | Ray3d Compute point (with altitude) at given angles and altitude.  
containsAngles(position: LongitudeLatitudeNumber, allowPeriodicLongitude: boolean = true): boolean test if the angles of the LongitudeLatitudeNumber are within the sweep ranges.  
intersectRay(ray: Ray3d, restrictToPatch: boolean, convertIntersectionRadiansToFractions: boolean = false): CurveAndSurfaceLocationDetail[] Return intersections of the ray and surface.  
projectPointToSurface(spacePoint: Point3d): undefined | LongitudeLatitudeNumber Find the closest point of the (patch of the) ellipsoid.  
range(result?: Range3d): Range3d Return the range of the patch, considering both boundary and internal extrema.  
uvFractionToAngles(longitudeFraction: number, phiFraction: number, h: number = 0, result?: LongitudeLatitudeNumber): LongitudeLatitudeNumber Return simple angles of a fractional position in the patch.  
uvFractionToPoint(longitudeFraction: number, latitudeFraction: number, result?: Point3d): Point3d Return the point on the ellipsoid at fractional positions in the angular ranges.  
uvFractionToPointAndTangents(longitudeFraction: number, latitudeFraction: number, result?: Plane3dByOriginAndVectors): Plane3dByOriginAndVectors Return the point and derivative vectors on the ellipsoid at fractional positions in the angular ranges.  
createCapture(ellipsoid: Ellipsoid, longitudeSweep: AngleSweep, latitudeSweep: AngleSweep): EllipsoidPatch Static Create a new EllipsoidPatch, capturing (not cloning) all input object references.  

Properties

Name Type Description
ellipsoid Ellipsoid    
latitudeSweep AngleSweep    
longitudeSweep AngleSweep    

Defined in

Last Updated: 30 November, 2023